
Estimating Population Abundance Using
Sightability Models: R SightabilityModel Package

John Fieberg
Minnesota Department of Natural Resources

Abstract

This introduction to the R SightabilityModel package is a slight modification of Fieberg
(2012), published in the Journal of Statistical Software. Sightability models are bi-
nary logistic-regression models used to estimate and adjust for visibility bias in wildlife-
population surveys (Steinhorst and Samuel 1989). Estimation proceeds in 2 stages: 1)
sightability trials are conducted with marked individuals, and logistic regression is used
to estimate the probability of detection as a function of available covariates (e.g., visual
obstruction, group size); 2) the fitted model is used to adjust counts (from future surveys)
for animals that were not observed. A modified Horvitz-Thompson estimator is used to
estimate abundance: counts of observed animal groups are divided by their inclusion prob-
abilites (determined by plot-level sampling probabilities and the detection probabilities
estimated from stage 1). We provide a brief historical account of the approach, clarifying
and documenting suggested modifications to the variance estimators originally proposed
by Steinhorst and Samuel (1989). We then introduce a new R package, SightabilityModel,
for estimating abundance using this technique. Lastly, we illustrate the software with a
series of examples using data collected from moose (Alces alces) in northeastern Minnesota
and mountain goats (Oreamnos americanus) in Washington State.

Keywords: abundance estimation, Horvitz-Thompson, logistic regression, sightability model,
R, survey.

1. Introduction

Many wildlife populations are monitored using aerial surveys, in which a random sample of
spatial units (or plots) are flown and all observed animals are counted. Typically, not all
animals in the selected spatial units will be seen, and thus, population abundance estimators
that correct only for sampling will be biased low. Steinhorst and Samuel (1989) developed a
method for correcting aerial surveys for undetected animals that is now widely used to esti-
mate abundance of a variety of wildlife populations, including populations of mountain goats
(Rice, Jenkins, and Chang 2009), bighorn sheep (Bodie, Garton, Taylor, and McCoy 1995),
Dall’s sheep (Udevitz, Shults, Adams, and Kleckner 2006), moose (Anderson and Lindzey
1996; Giudice, Fieberg, and Lenarz 2012), elk (Samuel, Garton, Schlegel, and Carson 1987;
Otten, Haufler, Winterstein, and Bender 1993; Cogan and Diefenbach 1998; Lubow, Singer,
Johnson, and Bowden 2002), burrowing owls (Manning and Garton in press), and various
waterfowl species (Pearse, Gerard, Dinsmore, Kaminski, and Reinecke 2008). The approach
proceeds in two stages. First, sightability trials are conducted with marked individuals to
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identify variables (e.g., group size, visual obstruction) that influence the probability that a
group of animals will be observed; these data are used to estimate parameters of a logistic
regression model. Second, the fitted logistic regression model is used to adjust counts (from
future surveys) for animals that were not observed.
Steinhorst and Samuel (1989) suggested a modified Horvitz-Thompson estimator of popula-
tion size, in which animal counts are divided by their estimated detection probabilities and
plot-level sampling probabilities. They derived a complex expression for the variance of the
estimator that included 3 separate variance components, that due to: 1) random sampling (of
aerial plots); 2) random detection (and missed detection) of independent groups of individ-
uals; and 3) estimation of parameters related to the detection process. Although Steinhorst
and Samuel (1989) proposed estimators for these variance components, these estimators were
later shown to be biased. Consistent estimators for the variance components were later de-
veloped as part of a Ph.D. thesis (Wong 1996), but these estimators have yet to appear in
the published literature or in available software. Furthermore, the primary software used to
implement the sightability model estimator, Program Aerial Survey (Unsworth, A., O., Lep-
tich, and Zager 1999; Leban and Garton 2007), incorrectly implements Steinhorst and Samuel
(1989)’s (biased) variance estimator in the case of stratified survey designs (Fieberg and Giu-
dice 2008). Thus, there is a need to develop general software to analyze data from wildlife
sightability surveys.
The purpose of this paper is twofold: 1) we aim to provide a historical account of the variance
estimators associated with the modified Horvitz-Thompson population abundance estimator
originally proposed by Steinhorst and Samuel (1989); 2) we introduce an R package that
implements Steinhorst and Samuel (1989)’s estimator along with Wong (1996)’s consistent
variance component (and total variance) estimators. We demonstrate the use of the software
with data collected from moose (Alces alces) in northeastern Minnesota and mountain goats
(Oreamnos americanus) in Washington State.

2. Modified Horvitz-Thompson estimator

2.1. Assumptions

The basic assumptions of the sightability model approach, listed below, are taken verbatim
from Steinhorst and Samuel (1989):

1. The population is geographically and demographically closed.

2. Groups of animals are independently observed.

3. Observed groups are completely enumerated and observed only once.

4. The survey design for land units can be specified.

5. The probability of observing a group is known or can be estimated.

2.2. Notation

Below, we use the notation of Thompson (2002) and Wong (1996). Let:
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N = the number of spatial sampling units (hereafter “plots”) in the population sampling
frame.

n = the number of plots in the sample.
Ii = random variable, equal to 1 if the ith plot is selected and 0 otherwise.
πi = P(Ii = 1), the probability that the ith plot is selected.

πi,i′ = P(Ii = 1, Ii′ = 1), the probability that both the ith and i′th plots are selected.
Mi = the number of animal groups in the ith plot {i = 1, 2, . . . , N}.
mi = the number of animal groups observed or sighted in the ith sampled plot {i =

1, . . . , n}.
yi,j = the number of animals in the jth group located in the ith plot {j = 1, 2, . . . , Mi}.
Zi,j = random variable, equal to 1 if the jth animal group in the ith plot is observed and 0

otherwise.
gi,j = P(Zi,j = 1|Ii = 1), the probability that the jth animal group located in the ith

sampled plot is observed (conditional on the ith plot having been sampled).
θi,j = 1/gi,j , an ‘inflation factor’ associated with the jth observed animal group in the ith

sampled plot.
τi = the number of animals in the ith plot:

τi =
Mi∑
j=1

yi,j

τ = total population size:

τ =
N∑

i=1

Mi∑
j=1

yi,j =
N∑

i=1
τi

2.3. Sightability model approach
The estimator developed in Steinhorst and Samuel (1989) involves the following steps:

1. A set of sightability trials are conducted by flying test plots, each containing a radio-
collared animal. Although some animals are involved in multiple test plot surveys, each
survey attempt is treated as an independent trial. A suite of animal-specific covariates
thought to influence detection probabilities, xi, are collected whenever an animal is de-
tected. Similarly, if an animal is not detected when flying a test plot, then telemetry
is used to locate the individual immediately after the test plot was surveyed. If the
individual is still within the boundaries of the test plot, then the same suite of covariate
information is collected and the observation is included in the sightability data frame.
The end result is a set of sightability (or detection) observations (wi = 1 if the radio-
collared animal in the ith sightability trial was seen and 0 otherwise) and a vector of
covariate values (xi) thought to influence detection probabilities.

2. A logistic regression model (relating probability of detection to covariates) is built using
data from step 1. Let β̂ = estimated regression parameters and Σ̂ = estimated variance-
covariance matrix of β̂.

3. A new, operational survey, is conducted in which a random sample of plots are sur-
veyed. Within each plot, individuals or groups of individuals are observed, and the
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same covariates used to model detection probabilities in step 1 are recorded.

4. The regression model from step 2 is used to estimate ‘inflation factors’, θ̂i = inverse
probability of detection, for each independent group in step 3; these inflation factors
account for animals that were not detected during the operational survey. Steinhorst
and Samuel (1989) and Wong (1996) suggest using:

θ̂i = 1 + exp(−x⊤
i β̂ − x⊤

i Σ̂xi/2) (1)

Using large sample maximum likelihood theory and the result that β̂
d→ N(β, Σ), Stein-

horst and Samuel (1989) showed that this estimator will be consistent for 1
gi,j

.

Similarly, Steinhorst and Samuel (1989) suggested the following expressions for V̂ar (θ̂i)
and Ĉov (θ̂i, θ̂j), where i and j index observations with two different sets of covariates
xi and xj :

V̂ar (θ̂i) = exp(−2x⊤
i β̂ − 2x⊤

i Σ̂xi)(exp(x⊤
i Σ̂xi) − 1) (2)

Ĉov (θ̂i, θ̂j) = exp(−(xi + xj)⊤β̂ − (xi + xj)⊤Σ̂(xi + xj)/2)(exp(x⊤
i Σ̂xj) − 1) (3)

These expressions, motivated by the asymptotic normality of β̂, will be needed to derive
an expression for V̂ar (τ̂).

5. The total number of animals in the ith sampling unit is estimated by summing the
number of independently observed animals (or groups of animals) multiplied by their
inflation factors (from step 4) across all observed groups in the aerial unit:

τ̂i =
Mi∑
j=1

Zi,jyi,j θ̂i,j =
mi∑
j=1

yi,j θ̂i,j

6. The total number of animals in the study area, τ , is estimated by dividing values in
step 5 by known probabilities of sampling each aerial unit to account for unsampled
aerial units:

τ̂ =
N∑

i=i

Mi∑
j=1

IiZi,jyi,j θ̂i,j

πi
=

n∑
i=i

mi∑
j=1

yi,j θ̂i,j

πi
(4)

This estimator is a modified Horvitz-Thompson estimator because it is constructed by
dividing each observation by its estimated inclusion probability - i.e., probability of the
animal or group of animals being observed during the survey (Steinhorst and Samuel
1989; Thompson 2002).

Note, the approach can also be applied to situations involving a complete aerial census (by
setting all πi = 1). In the same way, one can apply the approach to non-randomly sampled
plots (but inference should be restricted to these plots). Importantly, Horvitz-Thompson
estimators are unbiased if inclusion probabilities are known. When the inclusion probabilities
are not known, the modified Horvitz-Thompson estimator will still be consistent, provided
the estimators of the inclusion probabilities are consistent (Thompson 2002).
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3. Variance estimators
The variance of τ̂ can be derived by applying the conditional variance formula (Casella and
Berger 1990):

Var (Y ) = EX [Var (Y |X)] + Var X [E(Y |X)]. (5)
To help understand the historical development of variance estimators, it is helpful to distin-
guish between two cases:

Case A Detection (i.e., sightability) probabilities are assumed known.

Case B Detection probabilities are estimated.

Following Steinhorst and Samuel (1989) and Wong (1996), we will refer to the variance of τ̂
as Var (τ̂π) for Case A and Var (τ̂LR) for Case B.

3.1. Case A: Detection parameters assumed known
In the case where detection parameters are assumed known, uncertainty arises from random
sampling of aerial plots and also from the random detection process, captured by the indicator
variables Ii and Zi,j , respectively. Conditioning on the Ii, and applying Equation 5, Steinhorst
and Samuel (1989) derived an expression for Var (τ̂π) when detection probabilities are known:

Var (τ̂π) = Var I(EZ|I(τ̂π)) + E(Var Z|I(τ̂π)) = Vs + Vd, with

Vs =
N∑

i=1

1 − πi

πi
τ2

i +
N∑

i ̸=i′

πi,i′ − πiπi′

πiπi′
τiτi′ . (6)

Vd =
N∑

i=1

1
πi

Mi∑
j=1

1 − gi,j

gi,j
y2

i,j . (7)

Thus, Var (τ̂π) is composed of two terms (or components), the first of which is due to sampling
(Vs); the second is due to the random detection process (Vd). Steinhorst and Samuel (1989)
suggested estimators for these variance components, which we will label vs and vd:

vs =
n∑

i=1

1 − πi

π2
i

τ̂2
i +

n∑
i ̸=i′

πi,i′ − πiπi′

πi,i′πiπi′
τ̂iτ̂i′ (8)

vd =
n∑

i=1

1
π2

i

mi∑
j=1

1 − gi,j

g2
i,j

y2
i,j , (9)

where τ̂i =
∑mi

j=1 yi,j θ̂i,j .
Thompson and Seber (1996) also derived an expression for Var (τ̂π) using Equation 5, but in
contrast to Steinhorst and Samuel (1989), they derived their expression by conditioning on
the detection indicators, Zi,j :

Var (τ̂π) = EZ(Var I|Z(τ̂π)) + Var Z(EI|Z(τ̂π)) = V1 + V2, with

V1 = EZ(
N∑

i=1

1 − πi

πi
τ̂2

i +
N∑

i ̸=i′

πi,i′ − πiπi′

πiπi′
τ̂iτ̂i′) (10)

V2 =
N∑

i=1

Mi∑
j=1

1 − gi,j

gi,j
y2

i,j . (11)
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Thompson and Seber (1996) did not evaluate the expectation in the expression for V1 (Equa-
tion 10). Nonetheless, they recognized that the two variance decompositions give equivalent
expressions for Var (τ̂) (i.e., Vs + Vd = V1 + V2). Using this equivalence, we can solve for V1:

V1 =
N∑

i=1

1 − πi

πi
τ2

i +
N∑

i ̸=i′

πi,i′ − πiπi′

πiπi′
τiτi′ +

N∑
i=1

1 − πi

πi

Mi∑
j=1

1 − gi,j

gi,j
y2

i,j . (12)

Thompson and Seber (1996) also showed that vd was an unbiased estimator for Vd, but that vs

was a biased estimator of Vs. Lastly, Thompson and Seber (1996) derived unbiased estimators
(v1 and v2) for the two terms in their variance decomposition and, thus, provided an unbiased
estimator for Var (τ̂π) when detection probabilities are assumed known:

v1 =
n∑

i=1

1 − πi

π2
i

τ̂2
i +

n∑
i ̸=i′

πi,i′ − πiπi′

πi,i′πiπi′
τ̂iτ̂i′ (13)

v2 =
n∑

i=1

1
πi

mi∑
j=1

1 − gi,j

g2
i,j

y2
i,j . (14)

[Note that vs is the same as v1, but vd and v2 differ by a factor of 1/πi.] Lastly, noting that
Steinhorst and Samuel (1989)’s estimator, V̂ar (τ̂π) = vs + vd is equal to v1 + vd, Thompson
and Seber (1996) were able to derive an unbiased estimate of Vs, which we will label v′

s:

v′
s = v1 + v2 − vd

=
n∑

i=1

1 − πi

π2
i

τ̂2
i +

n∑
i ̸=i′

πi,i′ − πiπi′

πi,i′πiπi′
τ̂iτ̂i′ −

n∑
i=1

1 − πi

π2
i

mi∑
j=1

1 − gi,j

g2
i,j

y2
i,j (15)

Wong (1996) derived the same estimator (i.e., v′
s for Vs) in her Ph.D. dissertation.

Interestingly, Samuel, Steinhorst, Garton, and Unsworth (1992) developed sightability esti-
mators for additional population quantities (e.g., sex ratios), and in their Appendix, they
suggested a new variance component estimator for Vd which turns out to be v2. Thus, Samuel
et al. (1992)’s suggestion results in biased estimators for each individual variance component,
but an unbiased estimate of Var (τ̂π), equivalent to Thompson and Seber (1996)’s estimator
V̂ar (τ̂π) = v1 + v2, if detection probabilities are assumed known.

3.2. Case B: Detection parameters are estimated

Steinhorst and Samuel (1989) derived an expression for Var (τ̂LR), by first noting that:

Var (τ̂LR) = Var (τ̂π) + EZ,IVar (τ̂LR|Z, I), (16)

where again, Var (τ̂π) denotes the variance for the case where detection parameters are as-
sumed to be known. This last term, EZ,IVar (τ̂LR|Z, I), captures uncertainty in τ̂LR associated
with the estimated (logistic regression) detection parameters. Thus, Steinhorst and Samuel
(1989) expressed the total variance in terms of 3 components, sampling [Vs], sightability [Vd],
and that due to modeling the detection probabilities [Vm]. Steinhorst and Samuel (1989)
further showed that:

Vm = EZ,IVar (τ̂LR|Z, I)
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=
N∑

i=1

1
πi

Mi∑
j=1

y2
i,j

θi,j
Var (θ̂i,j) +

N∑
i=1

1
πi

Mi∑
j ̸=j′

yi,jyi,j′

θi,jθi,j′
Cov (θ̂i,j , θ̂i,j′)

+
N∑

i ̸=i′

πi,i′

πiπi′

Mi∑
j=1

Mi′∑
j′=1

yi,jyi,j′

θi,jθi,j′
Cov (θ̂i,j , θ̂i′,j′) (17)

Steinhorst and Samuel (1989) and Wong (1996) derived the same estimator for Vm, which we
will refer to as vm:

vm =
n∑

i=1

1
π2

i

mi∑
j=1

y2
i,jV̂ar (θ̂i,j) +

n∑
i=1

1
π2

i

mi∑
j ̸=j′

yi,jyi,j′Ĉov (θ̂i,j , θ̂i,j′)

+
n∑

i ̸=i′

1
πiπi′

mi∑
j=1

mi∑
j′=1

yi,jyi′,j′Ĉov (θ̂i,j , θ̂i′,j′), (18)

where V̂ar (θ̂i,j) and Ĉov (θ̂i,j , θ̂i,j′) are given by Equation 2 and Equation 3.
Steinhorst and Samuel (1989) suggested estimating Var (τ̂LR) by combining vm with vs (Equa-
tion 8) and vd (Equation 9). Wong (1996) showed that while vm was a consistent estimator
of Vm, vs and vd were biased (away from 0) when detection parameters were estimated. She
derived the following consistent estimators of Vs and Vd, v∗

s and v∗
d respectively, for the case

where detection probabilities are estimated using logistic regression:

v∗
s =

n∑
i=1

1 − πi

π2
i

τ̂2
i +

n∑
i ̸=i′

πi,i′ − πiπi′

πi,i′πiπi′
τ̂iτ̂i′ −

n∑
i=1

1 − πi

π2
i

mi∑
j=1

y2
i,j(θ̂2

i,j − θ̂i,j)

−
n∑

i=1

1 − πi

π2
i

mi∑
j ̸=j′

yi,jyi,j′Ĉov (θ̂i,j , θ̂i,j′)

−
n∑

i ̸=i′

πi,i′ − πiπi′

πi,i′πiπi′

mi∑
j=1

mi′∑
j′=1

yi,jyi′,j′Ĉov (θ̂i,j , θ̂i′,j′) (19)

v∗
d =

n∑
i=1

1
π2

i

mi∑
j=1

y2
i,j(θ̂2

i,j − θ̂i,j − V̂ar (θ̂i,j)) (20)

Although these estimators have not been published in peer-reviewed literature, they were
used by Lubow et al. (2002) to analyze data collected on elk (Cervus elaphus) data in Rocky
Mountain National park (Colorado, USA).

3.3. Confidence intervals

The sampling distribution of τ̂ is often skewed right, and as a result, confidence intervals
constructed under an asymptotic normality assumption often fail to have correct coverage
rates (Wong 1996; Cogan and Diefenbach 1998). Using simulated data, Wong (1996) ex-
plored several alternative methods for constructing confidence intervals. Although the rela-
tive performance of the various methods depended on the specifics of the simulation, intervals
constructed under the assumption that (τ̂ − T ) is lognormally distributed, where T is the
total number of animals seen, tended to perform well across a range of simulation scenarios.
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Using this approach, confidence limits are formed using:

LCL = T + [(τ̂ − T )/C]
√

(1 + cv2) (21)

UCL = T + [(τ̂ − T )C]
√

(1 + cv2), (22)

where LCL and UCL are the lower and upper confidence limits, respectively, cv2 = var(τ̂)/(τ̂−
T )2, and C = exp[zα/2

√
ln (1 + cv2)].

4. Package description and example applications
The SightabilityModel package implements Steinhorst and Samuel (1989)’s logistic regression
sightability abundance estimator via the Sight.Est function. This function requires, as
arguments, the original sightability trial data frame and an operational survey data frame.
Alternatively, one can specify a pre-fitted model (using β̂ and Σ̂ as arguments to Sight.Est).
Covariates used in the sightability model must be present in both data frames (with identical
naming conventions in both). The operational data frame also requires variables named
total (containing the animal counts, yi,j) and subunit (a sample plot identifier). Most
operational surveys employ stratified random sampling designs to select survey plots (as a
means of increasing precision), with plots allocated to strata based on their expected animal
densities (e.g., ‘low’, ‘medium’, and ‘high’; Fieberg and Lenarz 2012). Thus, the operational
data frame must also include a variable named stratum, which serves as a stratum identifier
(stratum should take on a single value for non-stratified surveys). Lastly, the user must
supply a data frame containing sampling information, including nh (number of sampled plots
in each stratum), Nh (number of population units in each stratum), and a variable named
stratum (taking on the same values as the stratum variable in the operational data frame);
for non-stratified survey designs this data frame will contain a single record.
The Sight.Est function fits a logistic regression model to the sightability data frame and
applies the model to data from the operational survey to estimate population abundance, τ̂ .
The variance of τ̂ can be estimated using V̂ar (τ̂LR) = v1 + v2 + vm as suggested by Samuel
et al. (1992) or using Wong (1996)’s estimator V̂ar (τ̂LR) = v∗

s + v∗
d + vm (recommended).

Alternatively, one can use a nonparametric bootstrap to aid in the estimation of the variance
components (see Example 5 in the next section).

4.1. Example 1: Application to moose survey data

We illustrate the software using data collected from moose (Alces alces) in northeastern
Minnesota (Giudice et al. 2012). Sightability trial data were collected from 2005-2007 (124
trials were conducted and the results are captured in the exp.m data frame); operational
survey data from 2004-2007 are also included in the package (obs.m data frame). Lastly,
sampling information from the 2004-2007 operational surveys is captured in the sampinfo.m
data frame.

> options(prompt = "R> ", continue = "+ ", width = 70, useFancyQuotes = FALSE)

R> library("SightabilityModel")
R> data("obs.m")
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R> data("exp.m")
R> data("sampinfo.m")

R> exp.m[1:5, ] # first 5 observations

year observed voc grpsize
37 2005 1 20 4
38 2005 1 85 2
39 2005 0 80 1
40 2005 0 75 1
41 2005 0 70 1

The experimental data frame contains 4 variables: year (year of the test trial), observed
(equal to 1 if the moose was observed and 0 otherwise), voc (amount of screening cover within
4 animal lengths of the first animal seen), and grpsize (number of animals associated with
the radiocollared animal, i.e., cluster size). Each row represents an independent sightability
trial, with observed representing the random variables (wi).

R> obs.m[1:5, ]

year stratum subunit total cows calves bulls unclass voc grpsize
1 2004 1 140 2 1 1 0 0 90 2
2 2004 1 140 1 0 0 1 0 90 1
3 2004 1 140 2 0 0 2 0 75 2
4 2004 1 140 3 1 0 2 0 0 3
5 2004 1 180 2 2 0 0 0 85 2

Each record in the operational data frame corresponds to an independently sighted group
of moose, with variables that capture animal-specific covariates, xi = (voc, grpsize), for
potential inclusion in the detection model. The data frame also contains plot-level information
(stratum = stratum identifer, subunit = sample plot identifier). Lastly, total gives the
total number of animals observed in each independently sighted group (note: this variable
is redundant with grpsize; the latter variable is included to allow one to model detection
probabilities as a function of group size).
Lastly, the sampinfo.m data frame contains sampling information associated with the opera-
tional surveys conducted in years 2004-2007. Specifically, it contains the number of sampled
(nh) and population (Nh) units in each stratum:

R> sampinfo.m

year stratum Nh nh
1 2004 1 178 10
2 2004 2 127 14
3 2004 3 31 6
4 2005 1 238 12
5 2005 2 180 18
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6 2005 3 35 6
7 2006 1 238 18
8 2006 2 180 14
9 2006 3 35 5
10 2007 1 248 16
11 2007 2 170 18
12 2007 3 35 6

The Sight.Est function is used both to fit a specified logistic regression model and estimate
population abundance in a single step. Below, we illustrate the code using operational survey
data collected in 2004 only, modeling detection probabilities as a function of visual obstruction
(i.e., voc; note, an intercept-only model, in which detection probabilities are assumed to be
constant, can be specified using observed~1 in the Sight.Est function):

R> est.2004 <- Sight.Est(observed ~ voc, odat = subset(obs.m,
+ year == 2004), sdat = exp.m, sampinfo = subset(sampinfo.m,
+ year == 2004))

By default, Wong (1996)’s estimators are used to estimate Var (τ̂LR), and confidence intervals
are formed under the assumption that (τ̂ − T ) is lognormally distributed. The print function
provides information on the fitted sightability model and sampling statistics. In addition,
it provides the point estimate and confidence interval as well as estimates of each of the 3
variance components.

R> print(est.2004)

Call:
Sight.Est(form = observed ~ voc, sdat = exp.m, odat = subset(obs.m,

year == 2004), sampinfo = subset(sampinfo.m, year == 2004))

------------------- SIGHTABILITY MODEL ---------------------

Call: glm(formula = form, family = binomial(), data = sdat)

Coefficients:
(Intercept) voc

1.75993 -0.03479

Degrees of Freedom: 123 Total (i.e. Null); 122 Residual
Null Deviance: 171.6
Residual Deviance: 147.4 AIC: 151.4

----------------- Population Survey data ----------------

Stratum Sampling Information
stratum nh Nh

1 1 10 178
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2 2 14 127
3 3 6 31

Number of animals seen in each stratum
1 2 3

68 248 202

-------------- POPULATION ESTIMATE ( 95 % CI) ----------------

[1] tau.hat = 13,096 ; 95 % CI = ( 8,549 , 21,430 )

------------------ SE(tau.hat) --------------------------------
Variance method: [1] "Wong"

SE
3,117

-------------- Variance Components -------------------

VarSamp VarSight VarMod
3,033,952 873,246 5,810,441

Note: the variance component estimates provide useful information for improving future
surveys. In particular, the first and third variance components (sampling uncertainty and
parameter uncertainty associated with the detection model, respectively) are under control
of the observer. Sampling uncertainty can be reduced by surveying a larger number of aerial
plots or by implementing a more efficient sampling design (Fieberg and Lenarz 2012), whereas
parameter uncertainty can be reduced by conducting more sightability trials. The large vari-
ance component associated with model parameters (i.e., VarMod), suggests that conducting
additional sightability trials would be useful, particularly since the benefits would be realized
in multiple years (i.e., all estimates using the same sightability model will be improved by
reducing this variance component).
For a more concise summary, one can use the summary function, which returns the point
estimate and confidence interval:

R> summary(est.2004)

[1] tau.hat = 13,096 ; 95 % CI = ( 8,549 , 21,430 )

4.2. Example 2a: Correlated stratum-specific estimates

Stratified random sampling is often used to select plots in aerial surveys. Unlike traditional
survey estimates that employ stratified random sampling, stratum-specific abundance esti-
mates will be correlated when a common detection model is used to correct counts in all strata
(Fieberg and Giudice 2008). Unfortunately, many authors have mistakenly assumed stratum-
specific variances will sum to give the total variance; ignoring the correlation among stratum-
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specific estimates will typically result in an underestimate of the total variance (Fieberg and
Giudice 2008). This next example highlights this point.
We begin by analyzing 2004 survey data for each stratum separately, storing the results in a
matrix named tau.hats:

R> tau.hats <- matrix(NA, 3, 5)
R> rownames(tau.hats) <- c("Stratum 1", "Stratum 2", "Stratum 3")
R> for(i in 1:3){
+ tempsamp <- sampinfo.m[i, ]
+ tempobs <- obs.m[obs.m$year == 2004 & obs.m$stratum == i, ]
+ temp <- Sight.Est(observed ~ voc, odat = tempobs, sdat = exp.m,
+ sampinfo = tempsamp)
+ tau.hats[i, ] <- temp$est
+ }
R> colnames(tau.hats) <- names(temp$est)
R> tau.hats<-round(tau.hats, 0)
R> print(format(tau.hats, big.mark = ","), quote = FALSE)

tau.hat VarTot VarSamp VarSight VarMod
Stratum 1 4,152 2,892,280 1,555,085 487,767 849,429
Stratum 2 5,098 1,389,226 797,124 191,047 401,055
Stratum 3 3,846 1,679,580 681,744 194,431 803,405

We then compare the sum of the stratum-specific abundance estimates and variance compo-
nent estimates to those obtained by applying the Sight.Est function once (i.e., to data from
all strata).

R> est.2004 <- Sight.Est(observed ~ voc, odat = subset(obs.m,
+ year == 2004), sdat = exp.m, sampinfo = subset(sampinfo.m,
+ year == 2004))
R> print(format(round(est.2004$est, 0), big.mark = ","), quote = FALSE)

tau.hat VarTot VarSamp VarSight VarMod
13,096 9,717,638 3,033,952 873,246 5,810,441

R> naive.tau.hats<-round(apply(tau.hats[1:3, ], 2, sum), 0)
R> print(format(naive.tau.hats, big.mark = ","), quote = FALSE)

tau.hat VarTot VarSamp VarSight VarMod
13,096 5,961,086 3,033,953 873,245 2,053,889

Note that the point estimate formed by summing the stratum-specific abundance estimates
is correct, but the sum of the stratum-specific variances is too small (5,961,086 compared
to 9,717,638). The difference is due to the positive covariance among the stratum-specific
estimates as a result of applying the same detection model to each stratum (note the variance
components due to sampling and sightabilty are independent across strata).
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Thus, if stratum-specific estimates are of interest, they can be obtained using separate calls
to Sight.est, but the variance estimate for the total population size (i.e., aggregated across
strata) requires that all data be processed simultaneously (e.g., using an additional call to
Sight.Est with all of the operational survey data included).

4.3. Example 2b: Non-independent population estimates

Often, management agencies are interested in changes in population size (e.g., from one year to
the next). Similar to stratum-specific estimates, population estimates will not be independent
across years if they are formed using the same sightability model. Typically, estimates will
exhibit a positive covariance, making tests (for a difference between years) conservative if
estimates are assumed to be independent.
The vardiff function can be used to estimate the variance of a difference between two
population estimates, while accounting for any covariance between the estimates due to using
the same sightability model. The function takes as arguments 2 sightability model objects
created from separate calls to the Sight.Est function.

R> est.2006 <- Sight.Est(observed ~ voc, odat = subset(obs.m,
+ year == 2006), sdat = exp.m, subset(sampinfo.m,
+ year == 2006))
R> est.2007 <- Sight.Est(observed ~ voc, odat = subset(obs.m,
+ year == 2007), sdat = exp.m, subset(sampinfo.m,
+ year == 2007))
R> vdiff<-vardiff(est.2006, est.2007)
R> print(format(vdiff, nsmall = 0, big.mark = ","), quote = FALSE)

Var(difference)
[1,] 2,562,188

R> naive<-est.2006$est[2] + est.2007$est[2]
R> print(format(naive, nsmall = 0, big.mark = ","), quote = FALSE)

VarTot
3,649,057

As expected, the estimates of moose abundance in 2006 and 2007 exhibit a positive covariance
due to using the same sightability model to correct for detection. Thus, the naive estimate
(formed by summing the individual variances as though the two estimates were independent)
is too large. We therefore recommend using the vardiff function whenever estimating differ-
ences in population size across years. We also provide a function (varlog.lam) to calculate
the variance of the log rate of change between two population estimates (i.e., var(log(τ̂2/τ̂1)).
Lastly, it is interesting to note that naive estimates of variance (assuming independence) were
too small in Example 2a, but too large in Example 2b. In both cases, individual estimates
were positively correlated because they were formed using the same sightability model. These
results follow from the fact that Example 1a involves estimation of a sum [with var(x + y) =
var(x) + var(y) + 2cov(x, y)] whereas Example 1b involves estimation of a difference [with
var(x − y) = var(x) + var(y) − 2cov(x, y)].
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4.4. Example 3: Non-linear detection functions

Giudice et al. (2012) considered models in which the logit detection probability varied non-
linearly as a function of voc. In this next example, we show how the ns function in the splines
package of Program R (R Development Core Team 2010) can be used to allow for non-linear
sightability models (on the logit scale). To do so, we need to create the spline basis functions
(in both experimental and operational data frames) first before calling Sight.Est. Below,
we allocate 3 degrees of freedom to model the effect of voc on the probability of detection.

R> library("splines")

R> exp.m$voc.ns <- ns(exp.m$voc, df = 3)
R> obs.m$voc.ns <- predict(exp.m$voc.ns, obs.m$voc)
R> ns.est <- Sight.Est(observed ~ voc.ns, odat = subset(obs.m,
+ year == 2004), sdat = exp.m, subset(sampinfo.m,
+ year == 2004))
R> ns.est$sight

Call: glm(formula = form, family = binomial(), data = sdat)

Coefficients:
(Intercept) voc.ns1 voc.ns2 voc.ns3

2.858 -2.056 -6.902 -2.565

Degrees of Freedom: 123 Total (i.e. Null); 120 Residual
Null Deviance: 171.6
Residual Deviance: 145.7 AIC: 153.7

R> print(format(round(ns.est$est, 0), big.mark = ","), quote = FALSE)

tau.hat VarTot VarSamp VarSight VarMod
12,585 10,744,879 2,559,523 608,521 7,576,835

4.5. Example 4: Using multi-model inference techniques

Many sightability studies collect a wide array of covariate data for relatively few numbers
of sightability trials. Developing predictive models that perform well on future data can be
challenging in these situations (Giudice et al. 2012). Model averaging can serve as a form
of shrinkage, and thus may help to improve predictive accuracy when applying the model to
new data (Burnham and Anderson 2002; Giudice et al. 2012). Burnham and Anderson (2002)
describe a popular approach for performing model averaging in wildlife research, including the
calculation of unconditional variance-covariance matrices that attempt to account for model
selection uncertainty.
Model-averaged parameter estimates and unconditional variance-covariance matrices can be
used to estimate abundance, by passing these values as arguments to the Sight.Est func-
tion. For illustrative purposes, we consider multi-model inference results from Rice et al.
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(2009), applied to an operational survey of mountain goats in Olympic National Park, Wash-
ington. Model-averaged regression parameters (for covariates GroupSize, Terrain, and
pct.VegCover), and the corresponding unconditional variance-covariance matrix from Rice
et al. (2009) are stored in a list named g.fit:

R> data("g.fit")

R> g.fit

$beta.g
[1] 1.385 0.158 -1.138 -0.012

$varbeta.g
[,1] [,2] [,3] [,4]

[1,] 0.160801 -0.013000 -0.090000 -1.0e-03
[2,] -0.013000 0.003721 -0.001000 0.0e+00
[3,] -0.090000 -0.001000 0.161604 0.0e+00
[4,] -0.001000 0.000000 0.000000 8.1e-05

R> data("gdat")

R> gdat[1:5, ]

GroupSize Terrain pct.VegCover stratum total subunit
1 1 0 38.00 1 1 69
2 1 0 38.00 1 1 69
3 1 0 3.25 1 1 69
4 1 0 3.25 1 1 69
5 1 0 1.77 1 1 69

We create a data frame to hold the sampling information for the operational survey:

R> sampinfo<-data.frame(nh = c(6, 23, 11), Nh =
+ c(6, 27, 65), stratum=c(1,2,3))

Although 3 strata were surveyed, no mountain goats were observed in the 11 low stratum
plots.

R> table(gdat$stratum)

1 2
50 27

Thus, we only supply the first two records of sampinfo when we call Sight.Est. We also
need to specify bet=beta.g and varbet=varbeta.g to indicate that we are supplying our
own regression model (fit outside of Sight.Est):
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R> goat.est<-Sight.Est(observed ~ GroupSize + Terrain + pct.VegCover,
+ odat = gdat, sampinfo = sampinfo[1:2, ], bet = g.fit$beta.g,
+ varbet = g.fit$varbeta.g)
R> print(goat.est)

Call:
Sight.Est(form = observed ~ GroupSize + Terrain + pct.VegCover,

odat = gdat, sampinfo = sampinfo[1:2, ], bet = g.fit$beta.g,
varbet = g.fit$varbeta.g)

------------------- SIGHTABILITY MODEL ---------------------
$bet
[1] 1.385 0.158 -1.138 -0.012

$varbet
[,1] [,2] [,3] [,4]

[1,] 0.160801 -0.013000 -0.090000 -1.0e-03
[2,] -0.013000 0.003721 -0.001000 0.0e+00
[3,] -0.090000 -0.001000 0.161604 0.0e+00
[4,] -0.001000 0.000000 0.000000 8.1e-05

$note
[1] "User supplied regression model"

----------------- Population Survey data ----------------

Stratum Sampling Information
stratum nh Nh

1 1 6 6
2 2 23 27

Number of animals seen in each stratum
1 2

124 56

-------------- POPULATION ESTIMATE ( 95 % CI) ----------------

[1] tau.hat = 230 ; 95 % CI = ( 205 , 293 )

------------------ SE(tau.hat) --------------------------------
Variance method: [1] "Wong"
SE
20

-------------- Variance Components -------------------
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VarSamp VarSight VarMod
137 168 82

4.6. Example 5: Use of the bootstrap to estimate variance components
Fieberg and Giudice (2008) used simulations to explore the reliability of the estimators of
Var (θi,j) and Cov (θi,j , θi′,j′) given in Equation 2 and 3. They found that these variance
and covariance terms were generally underestimated when a small number of sightability
trials were used to estimate β (e.g., < 100), and suggested a non-parametric bootstrap (e.g.,
resampling sightability data with replacement) might be useful for estimating these terms
(see also e.g., Wong 1996; Cogan and Diefenbach 1998).
If the user specifies Vm.boot = TRUE when calling the Sight.Est function, V̂ar (θi,j) and
Ĉov (θi,j , θi′,j′) will be estimated by applying a non-parametric bootstrap to the sightability
data frame. Specifically, the logistic regression model is fit to nboot bootstrap data sets
and Var (θi,j) and Cov (θi,j , θi′,j′) are estimated using empirical variance/covariances across
bootstrap replicates. These estimates are then plugged into formulas used for estimating
Vs, Vd, and Vm.
In this example, we compare analytical and bootstrap estimates of variance (with 10,000
bootstrap replicates), considering only the subset of moose experimental data collected in
2005 (representing a total of 39 sightability trials).

R> analytical.est <- Sight.Est(observed ~ voc, odat = subset(obs.m,
+ year == 2004), sdat = subset(exp.m, year == 2005), subset(sampinfo.m,
+ year == 2004), method = "Wong", logCI = T, alpha = 0.05,
+ Vm.boot = FALSE)
R> print(format(round(analytical.est$est, 0), big.mark = ","), quote = FALSE)

tau.hat VarTot VarSamp VarSight VarMod
8,289 3,266,683 1,184,332 183,050 1,899,301

R> boot.est <- Sight.Est(observed ~ voc, odat = subset(obs.m,
+ year == 2004), sdat=subset(exp.m, year == 2005), subset(sampinfo.m,
+ year == 2004), method = "Wong", logCI = T, alpha = 0.05,
+ Vm.boot = TRUE, nboot = 10000)
R> print(format(round(boot.est$est, 0), big.mark = ","), quote = FALSE)

tau.hat VarTot VarSamp VarSight VarMod
8,289 5,057,288 1,131,796 153,888 3,771,605

As expected, the variance estimate calculated using the bootstrap is larger than the analytical
estimate (constructed using the estimators in Equation 2 and Equation 3).

5. Future work
Another potential concern with applying the sightability model approach is that group size, a
key covariate in many detection models, is often estimated with error (Cogan and Diefenbach
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1998; Walsh, Page, Campa, Winterstein, and Beyer 2009). In addition to problems asso-
ciated with estimating regression parameters when covariates are subject to measurement
error, animal counts, yi,j , will usually be too small. Walsh et al. (2009) suggested a double
observer approach to correct for this problem. We hope to incorporate this option in a future
version of the SightabilityModel package. In addition, we are currently exploring Bayesian
implementations that utilize data augmentation, similar to methods developed for analyzing
mark-recapture data with individual covariates (Royle 2009; Royle and Dorazio 2011). Lastly,
we hope to incorporate sightability estimators of other population quantities (e.g., calf:cow
ratios) as described by Samuel et al. (1992).
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